Онтология математического дискурса   ::   Гутнер Г Б

Страница: 87 из 170

Как мощность, так и порядковый тип бесконечного множества невозможно определить как его собственное свойство. Оно не обладает этим свойством как субстанция своим атрибутом. Мощность бесконечного множества определяется как свойство отношения множеств. Сущности можно приписывать признак, рассматривая ее саму по себе, независимо от других сущностей. Мощность множества (равно как его порядковый тип) устанавливается только для класса множеств. Поэтому подвести канторовское представление о существовании под аристотелевское учение о сущности невозможно без серьезных натяжек, хотя сам Кантор, по-видимому, хотел именно этого. вернуться в текст

2. Цитата приводится по книге [55], с. 245. вернуться в текст

3. В разных местах Брауэр говорит о качественно различимых частях или различимых вещах. В любом случае речь идет о дискретной последовательности событий, характеризующих когнитивную деятельность. Ряд лежащих на прямой (последовательно, друг за другом) отрезков является естественной математической моделью такой деятельности. вернуться в текст

4. Математическое развитие этих идей содержится в брауэровской теории континуума как среды становления для свободно становящихся последовательностей. Дискретные последовательности точек, выбираемых из среды сообразно некоторому закону или согласно свободному выбору, разбивают континуум на все более мелкие части, устанавливая определенную структуру отношений между этими частями. Подробно об этом см. в [34]. вернуться в текст

5.

|< Пред. 85 86 87 88 89 След. >|

Java книги

Контакты: [email protected]