Онтология математического дискурса   ::   Гутнер Г Б

Страница: 86 из 170

Суждение о непротиворечивости оказывается таким образом априорным и синтетическим, в самом строгом кантовском смысле. Гильбертовская метаматематика содержит в себе все установленные Кантом элементы знания: данный в созерцании объект, являющийся в пространстве и времени, синтетическое суждение об этом объекте и, наконец, синтез продуктивной способности воображения, в результате которого этот объект конструируется.

Таким образом две соперничающие математические школы имеют один и тот же философский корень. Можно сказать, что каждая из них сделала больший акцент на одной из двух выделенных Кантом интуиций. Если Брауэр, как мы видели, считал исходной интуицию времени, явно утверждая вторичность и производность пространства, то Гильберт, вообще ничего не говоря о времени, явно рассматривал пространство и пространственное конструирование как основу математики. Очевидная кантианская родословная двух влиятельных математических традиций несомненно требует более внимательного анализа кантовского текста. Именно к рассмотрению проблемы существования в математики с позиций философии Канта мы перейдем в следующей главе.

Примечания к Главе 2

1. Хотя Кантор и пытается выстроить иерархию математических понятий, подобную родо-видовой иерархии, и рассмотреть все построенные так объекты как некие субстантивированные универсалии, предлагаемая им процедура выделения общих свойств имеет мало общего с тем абстрагированием, которое описывает, например, Боэций (см. Введение).

|< Пред. 84 85 86 87 88 След. >|

Java книги

Контакты: [email protected]