Страница:
61 из 103
Но Архимед не только описывает свой метод, нои называет своих предшественников. При этом оказывается, что уже Демокрит определяя объем пирамиды и конуса, рассекал исследуемые геометрические тела параллельными плоскостями на бесконечное число бесконечно тонких слоев, предвосхитив таким образом принцип Кавальери. Следовательно, западно-европейское исчисление бесконечно-малых отнюдь не чуждо эллинскому духу; напротив, оно зародилось в Элладе в эпоху расцвета ее культуры и, развиваясь в течение веков, достигло такого совершенства у Архимеда, что этого последнего можно с полным правом назвать отцом современного "высшего анализа". Далее, уже Теэтет развивает учение об иррациональных величинах, а Эвдокс дает ему законченную форму, - чем явно опровергается утверждение Шпенглера, что понятие иррационального неведомо античной математике. Вообще все основные элементы и приемы западно-европейской математики мы находим в более или менее развитом виде у древних греков; математическое мышление последних отлично от нашего не по существу, а лишь по форме выражения; так, например, ту самую идею, которую мы выражаем в алгебраических символах (a+b)¤=a¤+2ab+b¤ греки выражали геометрическим построением "гномон" и т. п. Книги Эвклида вовсе не энциклопедия греческой математи ишь элементарный школьный учебник, который должны были усвоить вступающие в академию, прежде чем приступить к самостоятельным научным занятиям.
|< Пред. 59 60 61 62 63 След. >|