Страница:
31 из 71
Возьмем слова: о, ор, вор, ворот, кол, олово, коловорот, и упорядочим их по вхождению одних слов в другие (не забывая, что каждое слово входит в само себя). Это будет наша первая решетка.
Можно убедиться, что здесь выполняются все свойства частичного порядка. А о дополнительных свойствах поговорим позже.
Числа: 1, 2, 3, 4, 6, 9, 12, 18, 36 с отношением делить нацело, так же образуют решетку.
Обычные действительные числа с отношением «больше или равно» дают одну из самых распространенных решеток. Хотя для нас она менее экзотическая. Можно сказать, простая как бревно…
Множество всех подмножеств какого-то множества с отношением включения также дает решетку, причем, с рядом замечательных свойств.
Для определения решетки договоримся называть элемент НАИБОЛЬШИМ (НАИМЕНЬШИМ) , если он больше (меньше) любого другого элемента частично-упорядоченного множества – кратко ЧУМ . За математиками иногда можно заметить педантичность до занудства, а иногда непонятную приблизительность. Строже и точнее было бы здесь и далее, вопреки сложившейся традиции, применительно к ЧУМ , обладающим свойством рефлексивности, говорить «больше или равно» " НАИБОЛЬШИЙ ИЛИ РАВНЫЙ " и т.п. Но мы тоже будем говорить кратко «больше», подразумевая эти более длинные и точные словосочетания. Наибольший элемент, если таковой существует – единственный. На то он и наибольший. С наименьшим все аналогично.
|< Пред. 29 30 31 32 33 След. >|