ДИСКРЕТНАЯ МАТЕМАТИКА БЕЗ ФОРМУЛ   ::   Соловьев Александр

Страница: 29 из 71

А потом созерцать осколки, каждый из которых будет для фарфоринок классом эквивалентности применительно к отношению «принадлежать одному и тому же осколку»… Это лучше, чем разбивать группы, тем более, что ортодоксальные алгебраисты под «группой» понимают не кучу студентов, а нечто фундаментальное математическое… Но это уже начало другой романтической истории про молоденького французского гения и (увы) дуэлянта – Эвариста Галуа.

Заметную роль в математике играют и отношения ПОРЯДКА , обладающие свойствами транзитивности и антисимметричности. Нарушение любого из них нарушает порядок не только с точки зрения математики, но и здравого смысла.

Примеры. «Быть больше» на множестве чисел, «быть после» в очереди, «быть старше по званию» в армии.

Дополнительно, если порядки обладают свойством полноты, то их называют СОВЕРШЕННЫМИ . Например, «больше», на множестве действительных чисел.

Если отношение еще и рефлексивно, то порядок называют НЕСТРОГИМ (ЧАСТИЧНЫМ) . Например, «выть выше или равного роста». А предыдущие три примера – это отношения СТРОГОГО (ЛИНЕЙНОГО) порядка, поскольку в них имеет место антирефлексивность.

Отрадно то, что теоретико-множественные отношения порядка как правило совпадают с житейским представлением об упорядочении. Но не всегда. Знаменитое отношение «быть братом» с одной стороны очень похоже на отношение порядка. Иван брат Марьи, но Марья не брат Петра – вроде( ! ) антирефлексивность. Если Иван брат Петра, а Петр брат Марьи, то Иван брат Марьи. Вроде бы( ! ) транзитивность. Но, если Иван брат Петра, то и Петр брать Ивана – то есть с анитисимметричностью все-таки не получается. Хуже того, если Иван брат Петра, а Петр брать Ивана, то по свойству транзитивности придем к заключению, что Иван брат Ивана. А чтобы не возникал такой абсурдный результат, отношение «быть братом» признается нетранзитивным.

|< Пред. 27 28 29 30 31 След. >|

Java книги

Контакты: [email protected]