Диалоги (июнь 2003 г.)   ::   Гордон Александр

Страница: 122 из 340



И в качестве противоядия, в качестве одного из средств, обеспечивающих беспроблемное развитие математики, явилось создание математической логики, которая позволила впервые дать точные математические определения, а следовательно, и сделать объектом исследования такие понятия, которые в математике использовались, но использовались не как математические понятия, а именно: доказательство и алгоритм. Я не буду про другие говорить, но эти понятия сами по себе весьма важны.

В 1900-м году на Международном математическом конгрессе в Париже Давид Гильберт, знаменитый немецкий математик, я его уже называл, выступил со списком проблем, которые, как он считал, в 20-м веке в математике будут одними из самых важных. И нужно сказать, что формулировка этих проблем сыграла очень важную роль для развития математики. В частности, человек, который решил одну из проблем Гильберта, сразу получал всемирную известность – так что это был некий критерий. Но в заключение сам Гильберт сформулировал оптимистическое утверждение, что все вопросы, которые математики могут задать, обязательно на них можно получить ответ. Но что это значило, это вопрос довольно сложный.

В частности, можно доказать, решить проблему, то есть привести доказательство, что эта проблема имеет положительное решение или отрицательное решение. Но можно задать и более хитрый вопрос. А может быть, нет доказательства ни того, ни другого? Но для того чтобы математически ответить на такой вопрос, нужно знать, что такое доказательство. И когда математическая логика предложила точное определение этому понятию, то получились результаты, которые до сих пор будоражат умы человеческие, а именно, что можно доказать, что нет доказательства того или иного утверждения.

|< Пред. 120 121 122 123 124 След. >|

Java книги

Контакты: [email protected]