Онтология математического дискурса :: Гутнер Г Б
Страница:
146 из 170
примечание 3)
Итак именование представляет собой актуализацию предмета даже тогда, когда сам этот предмет не конструируется. Такой ход характерен не только и даже столько для арифметики, сколько для тех сфер математики, которые пытаются работать с бесконечными предметами. Введение предельных понятий, например, в том и состоит, что для объекта, точнее квазиобъекта, неконструируемого предмета находится имя, актуализирующее его в дискурсе. При этом дальнейшее развертывание дискурса оказывается все же вполне конструктивной процедурой, но строится в этой процедуре не предмет исследования, а последовательность выражений, интерпретируемых как высказывания об этом предмете. Например, обозначив предел числовой последовательности буквой 'a', мы можем строить знаковую конструкцию по правилам, предписанным определением предела. Любая теорема о существовании предела последовательности будет в этом случае предположением возможности названного понятия. Но чтобы показать эту возможность, нужно конструировать не саму эту последовательность вместе с ее пределом, а рассуждение о пределе, записываемое по определенным формальным правилам.
3 Дискурс имен и неконструктивные "объекты"
Именование делает математику способной рассматривать как действительные те предметы, которые никак не могут быть непосредственно построены. Возможность соответствующего этим предметам понятия обнаруживается, однако, по той же самой схеме, которую мы описали выше.
|< Пред. 144 145 146 147 148 След. >|