Онтология математического дискурса   ::   Гутнер Г Б

Страница: 147 из 170

Но конструкцией (играющей роль геометрического дополнительного построения) будет в этом случае сам дискурс, само математическое рассуждение, которое строится по определенным правилам. Неконструктивность исследуемых предметов вновь необходимо делает создаваемую знаковую конструкцию той самой системой пустых мест, о которой мы говорили выше. Но если в арифметике на пустое место всякий раз мог быть поставлен сконструированный объект, то в тех областях математики, которые "имеют дело с бесконечностью", туда нечего поставить, кроме имени.

Последнее означает, что существование в этом случае может быть понято только как существование элемента в структуре отношений. Хотя нельзя игнорировать и иную возможную интерпретацию существования предмета, актуализируемого с помощью имени. Можно (в духе математического реализма) считать, что используемое в рассуждении имя есть имя сущности. Эта идеальная сущность определяется через ряд атрибутов или свойств и предполагается пребывающей независимо от всякого дискурса. В рассуждении можно, исходя из известных, определяющих свойств обнаружить еще ряд неизвестных, увеличив таким образом наше знание о сущности. Но такая интерпретация требует очень жестких мер предосторожности. Называя те предметы, которые мы не можем построить, мы рискуем начать рассуждать о чем-то вовсе не существующем и стать жертвами иллюзий и беспочвенных спекуляций. На эту опасность указывал в свое время Беркли.

|< Пред. 145 146 147 148 149 След. >|

Java книги

Контакты: [email protected]