Онтология математического дискурса   ::   Гутнер Г Б

Страница: 29 из 170

Изучая вопрос о существовании математических предметов, мы должны прежде всего исключить из рассмотрения общие понятия. Ни о каком треугольнике "вообще" (или кубе "вообще") не может быть здесь и речи, поскольку общее не может быть сущностью. Это Аристотель устанавливает в VII книге "Метафизики" и основным аргументом выступает то, что общее всегда сказывается о каком-нибудь подлежащем. Следовательно, речь может идти только о единичном, "вот этом" математическом предмете. Далее, разбирая основные геометрические образы точка, линия, плоскость и тело, - Аристотель устанавливает (XIII,2), что только последнее может в каком-то смысле рассматриваться как сущность. Ни точка, ни линия, ни плоскость сущностями быть не могут, поскольку непосредственное указание на них возможно лишь тогда, когда они присутствуют в некотором теле. Из предположения об их самостоятельном существовании вне тела Аристотель выводит массу нелепостей. Но даже не касаясь подробностей его аргументации, можно легко видеть, что невозможно указать на точку иначе, как на границу некоторой линии, на линию - как на границу поверхности, на поверхность - как на границу тела. Иными словами точка, линия и поверхность не могут обладать даже относительной самостоятельностью, т.е. не могут рассматриваться как особые сущности, существующие в теле, подобно тому, например, как части существуют в целом. Они не обладают никакой самостоятельностью, ибо всегда подразумевают нечто другое, границей чего являются.

|< Пред. 27 28 29 30 31 След. >|

Java книги

Контакты: [email protected]