Онтология математического дискурса   ::   Гутнер Г Б

Страница: 99 из 170

Иными словами мы пока только предполагаем возможность понятия.

Ekqesis совершает переход от общего понятия к единичному объекту. С него начинается процедура конструирования. Вместо возможного треугольника (т.е. треугольника вообще) нам предстает действительный треугольник. Согласно Канту, такое выделение единичности составляет необходимый момент математического рассуждения. "..Математика ничего не может достигнуть посредством одних лишь понятий и тотчас спешит перейти к наглядному представлению, рассматривая понятие in concreto, однако не в эмпирическом наглядном представлении, а в таком, которое a priori установлено ею, т.е. конструировано, и в котором то, что следует из общих условий конструирования, должно иметь общее значение также и в отношении к объекту конструируемого понятия" (B744). Следует обратить внимание на точность кантовского выражения: "тотчас спешит перейти к наглядному представлению". В самом деле, сразу после формулировки общего утверждения начинается конструирование чувственно созерцаемого предмета. Иными словами происходит актуализация того, что в protasis фигурировало только как возможное. В ekqesis она (актуализация) в известном смысле беспроблемна, т.к. конструируется то понятие, возможность которого уже установлена. Здесь лишь воспроизводится синтез, проведенный ранее, поэтому мы имеем в распоряжении регулярный способ предъявления единичного предмета, соответствующего данному понятию (в нашем случае - понятию треугольника).

|< Пред. 97 98 99 100 101 След. >|

Java книги

Контакты: [email protected]