Онтология математического дискурса :: Гутнер Г Б
Страница:
102 из 170
Следовательно, только благодаря рефлектирующей способности суждения возможен синтез понятия в теореме.
Если построение есть непосредственное продолжение экспозиции, то доказательство как бы продолжает детерминацию. Оно представляет собой речь по поводу проведенного построения, описывая полученную в ходе его конструкцию. Доказательство, как и детерминация, имеет дело со следом. Хинтикка утверждает, что эта часть теоремы чисто аналитическая, поскольку, в отличии от экспозиции и построения, не вводит никаких новых единичных предметов. Все доказательство можно развернуть в виде цепочки силлогизмов.
1. Накрест лежащие углы равны. Углы 1 и 4 - накрест лежащие. ____________________________________ углы 1 и 4 - равны.
2. Накрест лежащие углы равны. Углы 2 и 5 - накрест лежащие. ___________________________________________ Углы 2 и 5 - равны.
3. Смежные углы в сумме равны двум прямым. Углы 1 и 3+5 - смежные. ___________________________________________
Углы 1 и 3+5 - в сумме равны двум прямым
4. Если слагаемые равны между собой, то их суммы равны . Слагаемые в суммах 4+5+2 и 1+3+2 равны между собой. ______________________________________________________
4+5+2 и 1+3+2 равны между собой.
5. Если две величины порознь равны третьей, то они равны между собой. 1+2+3 и p порознь равны 4+5+2 ___________________________________________ 1+2+3 и p равны между собой.
Обратим внимание на то, что меньшими посылками этих силлогизмов являются единичные синтетические суждения. (Поэтому и заключение каждого силлогизма - единичное суждение.
|< Пред. 100 101 102 103 104 След. >|